Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Andrew N Boa and Jonathan D Crane*

Department of Chemistry, University of Hull, Cottingham Road, Kingston-upon-Hull HU6 7RX, England

Correspondence e-mail: j.d.crane@hull.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.147$
Data-to-parameter ratio $=18.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

(3,5-Dimethylpyrazol-1-yl)acetic acid

At 150 K , the title compound, $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$, comprises onedimensional hydrogen-bonded homochiral helical chains of molecules.

Received 27 April 2004
Accepted 4 May 2004
Online 8 May 2004

Comment

The molecular structure of the title compound, (I), is shown in Fig. 1 and selected structural parameters are listed in Table 1. The least-squares planes of the pyrazole ring and the carboxylic acid group are almost mutually perpendicular, with a dihedral angle of $87.57(7)^{\circ}$, and atom N 2 is close to being coplanar with the carboxylic acid group, lying only 0.0067 (15) \AA out of the least-squares plane of the latter. The molecules form homochiral helical hydrogen-bonded chains parallel to the b axis (Fig. 2 and Table 2).

(I)

Experimental

The title compound, (I), was prepared according to the method of Micetich (1970).

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$	Mo $K \alpha$ radiation
$M_{r}=154.17$	Cell parameters from 6939
Orthorhombic,,$P 2_{1} 2_{1} 2_{1}$	reflections
$a=4.8528(4) \AA \AA$	$\theta=3.0-34.8^{\circ}$
$b=7.0073(6) \AA$	$\mu=0.10 \mathrm{~mm}^{-1}$
$c=23.256(3) \AA$	$T=150(2) \mathrm{K}$
$V=790.82(13) \AA^{3}$	Lath colourless
$Z=4$	$0.60 \times 0.25 \times 0.10 \mathrm{~mm}$
$D_{x}=1.295 \mathrm{Mg} \mathrm{m}^{-3}$	

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size.

Data collection

Stoe IPDS-II area-detector diffractometer
φ and ω scans
Absorption correction: none
11979 measured reflections
2013 independent reflections
1357 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.057$
$\theta_{\text {max }}=34.8^{\circ}$
$h=-7 \rightarrow 6$
$k=-11 \rightarrow 10$
$l=-37 \rightarrow 37$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.147$
$S=1.05$
2013 reflections
107 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0896 P)^{2}\right] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.26 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.088(15)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C5	$1.318(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.407(3)$
$\mathrm{O} 2-\mathrm{C} 5$	$1.201(2)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.331(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$1.359(2)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.451(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.348(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.514(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.381(3)$		
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 4$	$119.87(14)$	$\mathrm{O} 2-\mathrm{C} 5-\mathrm{O} 1$	$124.93(18)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$110.48(15)$		
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5$	$87.48(19)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$0.7(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.95(3)$	$1.79(3)$	$2.723(2)$	$169(3)$

Symmetry code: (i) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$.
All H atoms were initially located in a difference Fourier map. The positional and isotropic displacement parameters for the hydroxyl H atom were freely refined. The methyl H atoms were constrained to an ideal geometry, with a C-H distance of $0.98 \AA$, but each group was allowed to rotate freely about its $X-\mathrm{C}$ bond. All other $\mathrm{C}-\mathrm{H}$ atoms

The packing and unit cell of (I), viewed approximately down the a axis. Hydrogen bonds are denoted by dashed lines.
were placed in geometrically idealized positions, with $\mathrm{C}-\mathrm{H}$ distances of $0.95-0.99 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $1.2 U_{\text {eq }}(\mathrm{C})$ for all $\mathrm{C}-\mathrm{H}$ atoms.

Data collection: X - $A R E A$ (Stoe, 2001); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2001).

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Micetich, R. G. (1970). Can. J. Chem. 48, 2006-2015.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands.
Stoe. (2001). X-AREA and X-RED32. Stoe \& Cie GmbH, Darmstadt, Germany.

